

CS Winding and Precompression structures

DTT info-day

C.R. ENEA Frascati (Rome), Italy – October 2019

The DTT team

Outline

- CS coil description
- CS modules manufacturing approach
- Coil winding
- Pre-compression structures
- Final coil assembly
- Conclusions and recommendations

CS module: main features

To satisfy the DTT CS Design requirements:

	HF (inner) section	LF (outer) section	
CICC Op. Current	29.04 kA		
Peak field	13.4 T	8.5 T	
# s.c. wires	648	180	
# Cu wires	0	204	
Steel jacket thickn.	4.1 mm	2.0 mm	
Turn insulation	1.0 mm (glass-fiber + resin)		
Ground insulation	6.0 mm (glass-fiber + resin + Kapton)		
Wind & Insulate → React → Impregnate			
J _{ENG} (A/mm ²)	26.2	52.2	
# layers x turns	6 x 20	8 x 25	
Magnetic Fux	1	16.2 Wb	
Inner/outer radius	443 m	443 mm / 755 mm	
Max. voltage	3.5 kV (terr	3.5 kV (terminal to terminal)	

CS module: geometry

CS module: geometry

CS module: inlet / outlet configuration

CS module: winding configuration

DTT CS Coil - Industry meeting - CR ENEA – Frascati

CS module: HF to LF joint

- Two terminations and one inter-layer joint per module.
- Inter-layer joint: preferably manufactured on the external part of the coil, BUT 65 mm clearance wrt TF.

CS module: HF to LF joint

- Two terminations and one inter-layer joint per module.
- Inter-layer joint: preferably manufactured on the external part of the coil, BUT 65 mm clearance wrt TF.
- Another possibility would be to use "internal" joint, manufactured in-line during winding, thus embedded within the winding pack (*EDIPO / NAFASSY / ITER CS – like*).

CS module: manufacturing approach

Wind & Insulate \rightarrow React \rightarrow Impregnate manufacturing approach

Insulation to be applied during coil winding, before the Nb₃Sn reaction heat treatment:

→ turn insulation will not rely on Kapton: but according to computations, it is not necessary for the expected voltage levels (3.5 kV peak terminal-toterminal Voltage at plasma breakdown);

 \rightarrow the most appropriate choice of insulation material (glass / resin type) and manufacturing process, is under study, to minimize the risks.

CS Coil structures & assembly

CS Coil supports

(on 9 out of the 18 TF coils)

- Aligns the CS module stack to the machine centerline
- Resists net lateral load (plasma kink)
- Supports the vertical forces (CS weigth 70 Tons, 25 MN Neg triangularity at SOF)
 The system is based on a cantilever connected (X6 M36 superbolts 610 KN each, 33MN tot) to a vertical plate designed to support the vertical forces, block the toroidal movement but leaving the radial displacement "free".

The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.

CS gravity

support

CICC lengths supplied by ENEA

Dummy Spools

- 1 x complete HF dummy unit length:
 - Copper cable 400 m;
 - Single layer wound on a > 3 m spool.
- 1 x complete LF dummy unit length:
 - Copper cable 860 m;
 - Single layer wound on a > 3 m spool.
- Other Cu dummy lengths for process qualification?
- Superconducting dummy lengths for process qualification?

Cu / s.c. dummies for complete process qualification

CICC lengths supplied by ENEA

Regular Spools

- 7 x complete HF regular unit lengths:
 - Superconducting cable 400 m;
 - Single layer wound on a > 3 m spool.
- 7 x complete LF regular unit lengths:
 - Superconducting cable 860 m;
 - Single layer wound on a > 3 m spool.

6 CS + 1 spare modules

Module preparation

Operations to complete (1 module)

- 1. HF grade turn insulation & winding;
- 2. LF grade turn insulation & winding
- 3. He inlets welding;
- 4. Internal and terminal joint preparation;
- 5. Heat-treatment at 650°C;
- 6. Ground insulation application;
- 7. G10 inter-module grooved spacers insertion
- 8. VPI and curing;
- 9. Acceptance tests.

Coil assembly

After single modules shipped back and forth to/from ENEA for cold tests:

Operations to complete (6 modules)

- 1. Module stacking;
- 2. Pre-compression structures application;
- 3. Piping welding;
- 4. Support structures preparation;
- 5. Acceptance tests;
- 6. Transport structure preparation;
- 7. Shipping to ENEA Frascati.

Conclusions & Recommendations

- Detailed engineering design still under finalization;
- 1 spare module and 1 assembled CS coil made of 6 stacked coils and its pre-compression structures, shall be eventually shipped to ENEA in Frascati.

