The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.

PF Winding

DTT info-day

C.R. ENEA Frascati (Rome), Italy

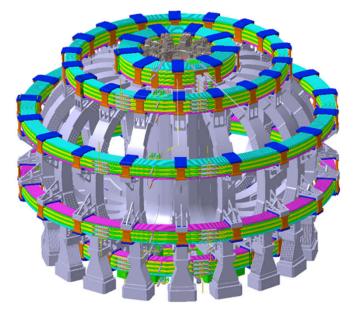
The DTT team

Outline

- PF conductor and coil description
- PF modules manufacturing approach
- Coil winding

DTT PF Coils - Industry meeting - CR ENEA – Frascati

PF Coil Overview


Requirements:

lz2

- 6 PF coils Identical in pairs to guarantee full top-down symmetry
- NbTi (PF2 & PF5) CICC: 27.1 kA 4.2 T
- NbTi (PF3 & PF4) CICC: 28.6 kA 5.4 T
- Nb₃Sn (PF1 & PF6) CICC: 28.3 kA 9.1T

Main design choices:

- PF1&PF6 wound in 4 QP+1 DP to minimize joint number;
- PF2 to 5 wound in DP

Iz2 lorenzo zoboli; 05/10/2019

PF coil: CICC

Conductor	PF1/6	PF2/5	PF3/4		
Radial Ext. Dim. (mm)	23.4	26.4	26.4		
Vertical Ext. Dim. (mm)	28.2	27.7	27.7		
Jacket thickness (mm)	3.0	3.0	3.0		
Inner Corner Radius (mm)	3.5	3.5	3.5		
Central Channel (OD/ID; mm)	7/5	7/5	7/5		
Inter-turn insulation (mm)	1.8				
# SC strands (0.82mm)	180 (Nb ₃ Sn)	162 (NbTi)	324 (NbTi)		
Strand Cu no-Cu ratio	1	1.9	1.9		
# Cu strands (0.82mm)	216	324	162		
Total strand number	396	486	486		
Void fraction	29.9% (*)	30.2%	30.2%		

Present reference CICC solution based on:

- 1. rectangular (or square) geometry, with constant thickness steel jacket;
- 2. EITHER very short twist pitch cable configuration (ITER CS-like) OR long twist pitch & low Void Fraction (HFML / NHMFL-like)
- 3. Assumption: **e**_{eff} = **0.65%**

KDEMO-LF sample

The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.

Diapositiva 5

Iz4 lorenzo zoboli; 05/10/2019

PF coil: main features

lz3

Coil	PF1/6	PF2/5	PF3/4
Bmax (T) (input data)	9.1	4.2	5.3
MAturns max (input data)	10.19	4.34	5.61
Double Pancake Insulation	1mm		
R (mm)	1416	3068	4335
ΔR (mm)	542	302	422
Z (mm)	±2760	±2534	±1015
ΔΖ (mm)	590.4	516.8	452.2
Ground Insulation (to be added to $\Delta R\&\Delta Z$)	5mm		
# turns (radial)	20	10	14
# turns (vertical)	18	16	14
N turns totali	360	160	196
l _{op} max (kA)	28.3	27.1	28.6
ΔT _{margin} (Τ _{op} : 4.5K)	1.8	1.9	1.7
V _{max} (V)	2150	1350	3290
Weight (ton)	15	16	28

The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.

Iz3 lorenzo zoboli; 05/10/2019

PF coil: turn insulation

lz4

- turn insulation should consist of layers of interleaved kapton and fiberglass.
- 1.8mm turn insulation thickness is conservative in order to have a large margin, thus making a turn-to-turn and DP-to-DP insulation fault very unlikely
- analyses to evaluate voltage values in normal and faulted conditions are on going

ITER PF like turn insulation layout

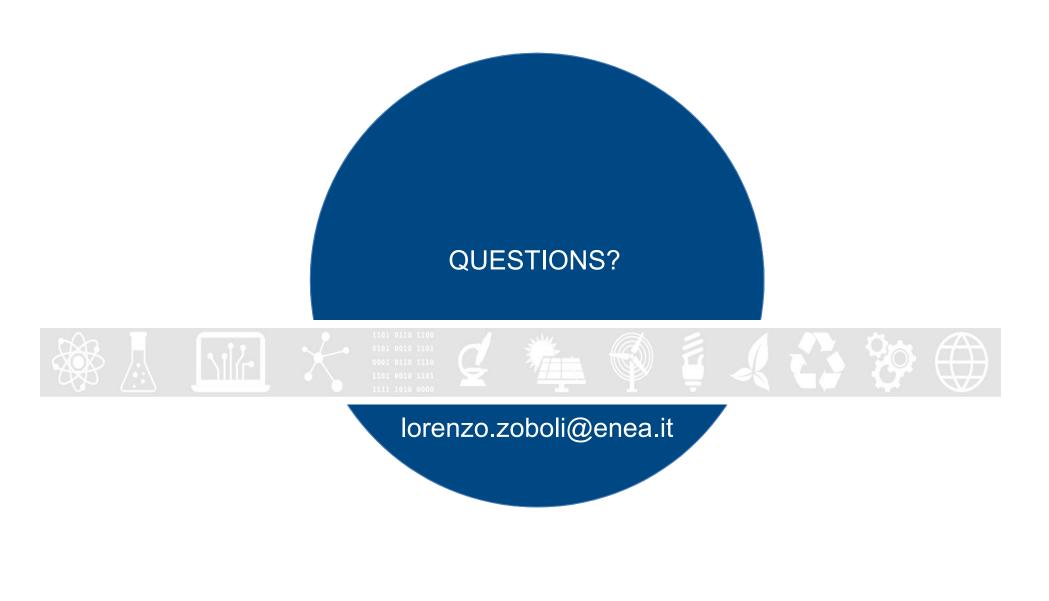
for PF2 to PF5 turn insulation is thought to be performed during winding

for PF1 & PF6 manufacturing approach should be:

Wind & React \rightarrow Insulate \rightarrow Impregnate

so that a technical solution must be foreseen for turn insulation after the reaction of QP and DP

Diapositiva 7


Iz4 lorenzo zoboli; 05/10/2019

PF module: winding

- due to narrow spaces available at the polar regions of DTT, the joints (whose number has been decreased by QP choice) will be placed along radial direction, of twin box type, praying hands configuration;
- for PF2&5 and PF3&4, the joints will be twin-box type, in shaking hands configuration, distributed along the external circumference
- final orientation of termination has to be assessed according to the available space and possible interference with other structures

DTT PF Coils - Industry meeting - CR ENEA – Frascati The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.

The material and information contained in this presentation are provided for information purposes only, and should not construed as basis technical specifications of the call for tenders.